Incidencia de la inteligencia artificial en la gestión estratégica
Resumen
En los últimos años, las aplicaciones de inteligencia artificial (IA) han experimentado un crecimiento constante, lo que ha impulsado su adopción en diversas áreas dentro de las organizaciones y en distintos sectores de la economía global. Esta investigación busca examinar cómo se utiliza la IA en la formulación de estrategias empresariales, además de identificar posibles brechas de conocimiento que orienten investigaciones futuras. Para lograrlo, los autores emplean un estudio bibliométrico basado en el análisis de 28 investigaciones obtenidas de las bases de datos Scopus (23 estudios) y WoS (5 estudios), que exploran la relación entre IA y estrategia organizacional. Los resultados muestran que la IA adquirere relevancia en varias áreas estratégicas de las empresas. Específicamente, se destaca su creciente aplicación en el marketing estratégico, la administración estratégica y la gestión del capital humano y la formación de empleados, áreas que han visto grandes beneficios y transformaciones gracias a esta tecnología. Además, se observa un aumento reciente en su uso para el diseño de estrategias de sostenibilidad empresarial, ya que juega un papel cada vez más relevante en la creación de valor social y ambiental. Los autores concluyen que futuras investigaciones deberían centrarse en analizar en profundidad el nivel de incidencia de la IA en estas áreas estratégicas. Este enfoque permitiría entender mejor los beneficios y desafíos que plantea la integración de IA en las estrategias organizacionales y contribuiría al desarrollo de marcos conceptuales y prácticos que maximicen su impacto y efectividad en el entorno empresarial actual, promoviendo una adopción más informada y estratégica.
Descargas
Citas
Alshaketheep, K., Mansour, A.M., Al-Ma'aitah, M.M.L., Dabaghia, M.N., Dabaghie, Y.M. (2024). Leveraging AI Predictive Analytics for Marketing Strategy: The Mediating Role of Management Awareness. Journal of System and Management Sciences, 14(2), pp. 71–89. http://dx.doi.org/10.33168/JSMS.2024.0205
Adhikari, A., Joshi, R. & Basu, S. (2023) Collaboration and coordination strategies for a multi-level AI-enabled healthcare supply chain under disaster. International Journal of Production Research. http://dx.doi.org/10.1080/00207543.2023.2252933
Ajmera, D., Kharub, M., Krishna, A. & Gupta, H. (2024) Navigating the challenges of AI-enabled circular economy in the food and beverage sector: strategies for sustainable transformation. International Journal of Logistics Management. https://doi.org/10.1108/IJLM-09-2023-0408
Bhalla, N. (2019) The 3S process: A framework for teaching AI strategy in business education. Technology Innovation Management Review, 9(12), pp. 36–42. http://dx.doi.org/10.22215/timreview/1290
Biloslavo, R., Edgar, D., Aydin, E. and Bulut, C. (2024), Artificial intelligence (AI) and strategic planning process within VUCA environments: a research agenda and guidelines. Management Decision. https://doi.org/10.1108/MD-10-2023-1944
Broadhurst, M. (2022) How businesses of any size can use AI in a digital marketing strategy. Applied Marketing Analytics, 8(2), pp. 122–132. https://ideas.repec.org/a/aza/ama000/y2022v8i2p122-132.html
Chotia, V., Cheng, Y., Agarwal, R. & Vishnoi, S.K. (2024) AI-enabled Green Business Strategy: Path to carbon neutrality via environmental performance and green process innovation. Technological Forecasting and Social Change, 202, 123315. https://ideas.repec.org/a/eee/tefoso/v202y2024ics0040162524001112.html
Chung, E. (2023). Domain Knowledge-Based Human Capital Strategy in Manufacturing AI. IEEE Engineering Management Review, 51(1), pp. 108–122. http://dx.doi.org/10.1109/EMR.2022.3215074
Elhajjar, S. (2024). Unveiling the marketer's lens: exploring experiences and perspectives on AI integration in marketing strategies. Asia Pacific Journal of Marketing and Logistics. https://doi.org/10.1108/APJML-04-2024-0485
Haupt, M., Freidank, J., Haas, A. (2024) Consumer responses to human-AI collaboration at organizational frontlines: strategies to escape algorithm aversion in content creation. Review of Managerial Science. https://doi.org/10.1007/s11846-024-00748-y
Huang, MH., Rust, R.T. (2021) A strategic framework for artificial intelligence in marketing. J. of the Acad. Mark. Sci. 49, 30–50. https://doi.org/10.1007/s11747-020-00749-9
Krzywdzinski, M., Gerst, D., Butollo, F. (2023) Promoting human-centred AI in the workplace. Trade unions and their strategies for regulating the use of AI in Germany. Transfer: European Review of Labour and Research, 29(1), pp. 53–70. https://doi.org/10.1177/10242589221142273
Le, A.V. & Metzger, W. (2024) Assessing the impact and challenges of AI-based language models on the education sector: a proposal for new assessment strategies and design . Journal of Teaching in Travel and Tourism, 24(2), pp. 167–178. http://dx.doi.org/10.1080/15313220.2024.2311907
Lee, Y.S., Kim, T., Choi, S. & Kim, W. (2022) When does AI pay off? AI -adoption intensity, complementary investments, and R&D strategy. Technovation, 118, 102590
Lv, L., Huang, M., Guan, D., Yang, K. (2022) Apology or gratitude? The effect of communication recovery strategies for service failures of AI devices. Journal of Travel and Tourism Marketing, 39(6), pp. 570–587
Mittal, P. & Gautam, S. (2023) Logistic Regression and Predictive Analysis in Public Services of AI Strategies. TEM Journal, 12(2), pp. 751–756. doi: 10.18421/tem122-19
Morantes I., (2023). Inteligencia Artificial (IA) en la investigación científica: sistematización y reflexiones sobre experiencias educativas. Revista educare Vol. 27 N. 3. https://revistas.investigacion-upelipb.com/index.php/educare/article/view/2050/1797
Robinson, S.C. (2020) Trust, transparency, and openness: How inclusion of cultural values shapes Nordic national public policy strategies for artificial intelligence (AI). Technology in Society, 63, 101421. https://ideas.repec.org/a/eee/teinso/v63y2020ics0160791x20303766.html
Ruokonen, M. & Ritala, P. (2023) How to succeed with an AI-first strategy? Journal of Business Strategy. https://doi.org/10.1108/JBS-08-2023-0178
Sipola, J., Saunila, M., Ukko, J. (2023). Adopting artificial intelligence in sustainable business. Journal of Cleaner Production. Volume 426. https://doi.org/10.1016/j.jclepro.2023.139197
Stone, M., Aravopoulou, E., Ekinci, Y., Evans, G., Hobbs, M., Labib, A., Laughlin, P., Machtynger, J. and Machtynger, L. (2020), Artificial intelligence (AI) in strategic marketing decision-making: a research agenda, The Bottom Line, 33(2). 183-200. https://doi.org/10.1108/BL-03-2020-0022
Swanson, T., Zelner, J. & Guikema, S. (2022) COVID-19 has illuminated the need for clearer AI-based risk management strategiesJournal of Risk Research, 25(10), pp. 1223–1238. https://ideas.repec.org/a/taf/jriskr/v25y2022i10p1223-1238.html
Tariq MU, Poulin M and Abonamah AA. (2021) Achieving Operational Excellence Through Artificial Intelligence: Driving Forces and Barriers. Front. Psychol. 12. doi: 10.3389/fpsyg.2021.686624
Torres, J.M. (2024) Leveraging ChatGPT and bard for academic librarians and information professionals: a case study of developing pedagogical strategies using generative AI models. Journal of Business and Finance Librarianship, 29(3), pp. 169–182. http://dx.doi.org/10.1080/08963568.2024.2321729
Tucker, J. (2023) The future vision(s) of AI health in the Nordics: Comparing the national AI strategies. Futures, 149, 103154. https://doi.org/10.1016/j.futures.2023.103154
Vomberg, A., Schauerte, N., Krakowski, S., Ingram-Bogusz, C., Gijsenberg, M. & Bleier, A. (2023) The cold-start problem in nascent AI strategy: Kickstarting data network effects. Journal of Business Research Volume 168 Article number 114236. https://doi.org/10.1016/j.jbusres.2023.114236
Zechiel, F., Blaurock, M., Weber, E., Büttgen, M., Coussement, K. (2024). How tech companies advance sustainability through artificial intelligence: Developing and evaluating an AI x Sustainability strategy framework. Industrial Marketing Management, 119, pp. 75–89. https://doi.org/10.1016/j.indmarman.2024.03.010
Zhan, T., Feng, C., Chen, H. & Xian, J. (2022) Calming the customers by AI: Investigating the role of chatbot acting-cute strategies in soothing negative customer emotions. Electronic Markets, 32(4), pp. 2277–2292. https://ideas.repec.org/a/spr/elmark/v32y2022i4d10.1007_s12525-022-00596-2.html
Zhou, A., Tsai, W. & Men, L.R. (2024) Optimizing AI Social Chatbots for Relational Outcomes: The Effects of Profile Design, Communication Strategies, and Message Framing. International Journal of Business Communication. https://doi.org/10.1177/23294884241229223