100 años después de la BCG, vacunas vivas atenuadas frente a la tuberculosis
Resumen
Durante más de un siglo, se ha utilizado la vacuna BCG, derivada de una cepa atenuada de Mycobacterium bovis conocida como bacilo de Calmette-Guérin, para prevenir la tuberculosis. A pesar de su uso extendido, la eficacia de la vacuna BCG es variable, y su protección es transitoria. El objetivo corresponde a recopilar información sobre la viabilidad y eficacia de nuevas vacunas vivas atenuadas como alternativas a la vacuna BCG en la prevención de la tuberculosis. Se llevó a cabo una revisión bibliográfica de alcance descriptivo, utilizando artículos especializados en temas médicos, de enfermería y epidemiología de los últimos dos años (2022-2023), la búsqueda se realizó de manera autónoma en diversas bases de datos. En los ensayos clínicos y estudios preclínicos, diversas vacunas vivas atenuadas, inactivadas y de subunidades/adyuvantes han mostrado potencial para mejorar la inmunogenicidad y la protección contra la tuberculosis. Vacunas como MTBVAC y RUTI están en diferentes fases de desarrollo clínico, mientras que otras, como M72/AS01E y H56, están en fases avanzadas de prueba. Se concluye que, la tuberculosis incluye enfoques innovadores como vacunas subunitarias, recombinantes y de células enteras, con avances en el uso de adyuvantes y vectores virales para mejorar la respuesta inmune. A pesar del progreso significativo, es crucial desarrollar vacunas más eficaces para adultos y optimizar combinaciones vacunales, abordando la variabilidad genética de las cepas y diferencias inmunológicas entre poblaciones.
Descargas
Citas
Asociación Española de Vacunología (2024). Vacuna viva atenuada frente a Mycobacterium tuberculosis MTBVAC versus BCG en adultos y neonatos: un ensayo aleatorizado, controlado, doble ciego de aumento de la dosis. https://vacunas.org/vacuna-viva-atenuada-frente-a-mycobacterium-tuberculosis-mtbvac-versus-bcg-en-adultos-y-neonatos-un-ensayo-aleatorizado-controlado-doble-ciego-de-aumento-de-la-dosis/?ertthndxbcvs=yes&print=print.
Baquero-Artigao, F., Del Rosal, T., Falcón-Neyra, L., Ferreras-Antolín, L., Gómez-Pastrana, D., Hernanz-Lobo, A., Méndez-Echevarría, A., Noguera-Julian, A., Pascual Sánchez, M.T., Rodríguez-Molino, P., Piñeiro-Pérez, R., Santiago-García, B. y Soriano-Arandes, A. (2023). Update on the diagnosis and treatment of tuberculosis. An Pediatr (Engl Ed), 98(6),460-469. https://doi.org/10.1016/j.anpede.2023.03.009
Cao, H., Yang, S., Wang, Y., Luan, N., Yin, X., Lin, K., Yang, S., Wang, Y., Luan, N., Yin, X., Lin, K. y Liu, C. (2021). An established th2-oriented response to an alum-adjuvanted sars-cov-2 subunit vaccine is not reversible by sequential immunization with nucleic acid-adjuvanted th1-oriented subunit vaccines. Vaccines (Basel), 9(11), 1261. https://doi.org/10.3390/vaccines9111261
Campins Martí, M. y Moraga Llop, F. A. (2020). Vacunas 2020. Undergraf. S. L. https://vacunas.org/wp-content/uploads/2024/02/Vacunas_2020_compressed.pdf
Cho, T., Khatchadourian, C., Nguyen, H., Dara, Y., Jung, S. y Venketaraman V. (2021). A review of the BCG vaccine and other approaches toward tuberculosis eradication. Human Vaccines and Immunotherapeutics, 17(8), 2454-2470. https://doi.org/10.1080/21645515.2021.1885280
Chugh, S., Bahal, R. K., Dhiman, R. y Singh, R. (2024). Antigen identification strategies and preclinical evaluation models for advancing tuberculosis vaccine development. NPJ Vaccines, 9(1), 57. https://doi.org/10.1038/s41541-024-00834-y
Dhamnetiya, D., Patel, P., Jha, R. P., Shri, N., Singh, M. y Bhattacharyya, K. (2021). Trends in incidence and mortality of tuberculosis in India over past three decades: a joinpoint and age–period–cohort analysis. BMC Pulmonary Medicine, (21), 1-14. https://link.springer.com/content/pdf/10.1186/s12890-021-01740-y.pdf
Flores-Valdez, M. A., Kupz, A. y Subbian, S. (2022). Recent Developments in Mycobacteria-Based Live Attenuated Vaccine Candidates for Tuberculosis. Biomedicines, 10(11), 2749. https://doi.org/10.3390/biomedicines10112749
Gupta, S. y Pellett, S. (2023). Recent Developments in Vaccine Design: From Live Vaccines to Recombinant Toxin Vaccines. Toxins. Multidisciplinary Digital Publishing Institute (Basel), 15(9), 563. https://doi.org/10.3390/toxins15090563
Khandelia, P., Yadav, S. y Singh, P. (2023). An overview of the BCG vaccine and its future scope. Indian Journal of Tuberculosis, 70(1), 14-23. https://doi.org/10.1016/j.ijtb.2023.05.012
Keeley, A. J., Groves, D., Armitage, E. P., Senghore, E., Jagne, Y. J., Sallah, H. J., Drammeh, S., Angyal, A., Hornsby, H., De Crombrugghe, G., Smeesters, P. R., Rossi, O., Carducci, M., Peno, C., Bogaert, D., Kampmann, B., Marks, M., Shaw, H.A., Turner, C. R. y De Silva, T. I. (2023). Streptococcus pyogenes Colonization in Children Aged 24-59 Months in the Gambia: Impact of Live Attenuated Influenza Vaccine and Associated Serological Responses. Journal of Infectious Diseases, 228(7), 957-965. https://doi.org/10.1093/infdis/jiad153
Kiong, J., Nahar, U. J., Jin, S., Shalash, A. O., Zhang, J., Koirala, P., Khalil, Z. G., Capon, R. J., Skwarczynski, M., Toth, I. y Hussein, W. M. (2022). Development of Multilayer Nanoparticles for the Delivery of Peptide-Based Subunit Vaccine against Group A Streptococcus. Pharmaceutics, 14(10), 2151. https://doi.org/10.3390/pharmaceutics14102151
Levillain, F., Kim, H., Kwon, K.W., Clark, S., Cia, F., Malaga, W., Lanni, F., Brodin, P., Gicquel, B., Guilhot, C., Bancroft, G.J., Williams, A., Shin, S.J., Poquet, Y. y Neyrolles, O. (2020). Preclinical assessment of a new live attenuated Mycobacterium tuberculosis Beijing-based vaccine for tuberculosis. Vaccine, 38(6), 1416-1423. https://doi.org/10.1016/j.vaccine.2019.11.085.
Lin, K., Cao, H., Luan, N., Wang, Y., Hu, J., y Liu, C. (2023). Comparison of the Immune Effects of an mRNA Vaccine and a Subunit Vaccine against Herpes Zoster Administered by Different Injection Methods. Vaccines (Basel), 11(5), 1003. https://doi.org/10.3390/vaccines11051003
Organización Mundial de la Salud (2023). Global tuberculosis report 2023. https://www.who.int/publications/i/item/9789240083851
Organización Mundial de la Salud (2022). Informe mundial sobre la tuberculosis 2022. https://reliefweb.int/report/world/global-tuberculosis-report-2022?psafe_param=1&gad_source=1&gclid=CjwKCAiAx_GqBhBQEiwAlDNAZhwyET9QxWVxUvWj__hvgq-zFOUt6fOZKramtK6eb8AKl7NhYjvv6hoCfc4QAvD_BwE
Organización Panamericana de la Salud (2020). Tuberculosis en las Américas. Informe Regional 2020. https://iris.paho.org/handle/10665.2/55047
Organización Panamericana de la Salud (2022). Tuberculosis https://www.paho.org/es/temas/tuberculosis
Organización Panamericana de Salud (2021). Tuberculosis en las Américas. https://www.paho.org/es/documentos/tuberculosis-americas-informe-regional-2021
Martin, C., Aguilo, N. y Gonzalo-Asensio J. (2018). Vaccination against tuberculosis. Enferm Infecc Microbiol Clin (Engl Ed), 36(10), 648-656. https://doi.org/10.1016/j.eimc.2018.02.006
Martín, C., Marinova, D., Aguiló, N. y Gonzalo-Asensio, J. (2021). MTBVAC, a live TB vaccine poised to initiate efficacy trials 100 years after BCG. Vaccine, 39(50), 7277-7285. https://doi.org/10.1016/j.vaccine.2021.06.049
Meintjes, G., Brust, J. C. M., Nuttall, J. y Maartens, G. (2019). Management of active tuberculosis in adults with HIV. The lancet HIV, 6(7), 463-474. https://pubmed.ncbi.nlm.nih.gov/31272663/
Ministerio de Salud Pública de Ecuador (2018). Boletín Anual Tuberculosis https://www.salud.gob.ec/wp-content/uploads/2019/03/informe_anual_TB_2018UV.pdf
Morales, P., y Balcells, M.E. (2019). The importance of the BCG vaccine in the prevention of childhood tuberculosis. Revista Chilena de Pediatría. Sociedad Chilena de Pediatría, 90(6), 579-580. https://doi.org/10.32641/rchped.v90i6.1379
Montoya-Rosales, A. y Salazar-Cepeda, C.P. (2024). Tuberculosis extrapulmonar: más allá de un pulmón. Revista Ciencia UANL, 27(123), 37-43. https://www.researchgate.net/publication/377354113_Tuberculosis_extrapulmonar_mas_alla_de_un_pulmon
Moradi, M., Vahedi, F., Abbassioun, A., Ramezanpour, A., Sholeh, M., Taheri, M., Dargahi, Z., Ghanavati, R., Khatami, S.H. y Movahedpour, A. (2023). Liposomal delivery system/adjuvant for tuberculosis vaccine. Immunity, inflammation and disease, 11, 1-12. https://doi.org/10.1002/iid3.867
Mustafa, A. S. (2021). Adjuvants and Antigen-Delivery Systems for Subunit Vaccines against Tuberculosis. Vaccines (Basel), 9(9), 972. https://doi.org/10.3390/vaccines9090972
Orozco Andrade, I., Aguilar Morales, K.D., Reyes Gómez, U., Reyes Hernández, K.L., Vargas Mosso, M.E., Merlo Palomera M., Juárez Campos, C.E., Gutiérrez Gómez, V.M., Escalera Arroyo, P. Ayuzo del Valle, C., Gómez Ramírez, A.A., Galaviz Ballesteros, M.J. y Baeza Casillas, J. A. (2023). Vacuna BCG, protección contra tuberculosis y otros beneficios. Bol Clin Hosp Infant Edo Son, 40(2), 38-43. https://www.medigraphic.com/pdfs/bolclinhosinfson/bis-2023/bis232f.pdf
Pedersen, O. S., Holmgaard FB, Mikkelsen MKD, Lange C, Sotgiu G, Lillebaek T, Bengaard Andersen, A., Morberg, C., y Naestholt, V. (2023). Global treatment outcomes of extensively drug-resistant tuberculosis in adults: A systematic review and meta-analysis. Journal of Infection, 87(3),177-189. https://doi.org/10.1016/j.jinf.2023.06.014
Prendergast, K.A., Nagalingam, G., West, N.P. y Triccas, J.A. (2024). Mycobacterium tuberculosis Deficient in PdtaS Cytosolic Histidine Kinase Displays Attenuated Growth and Affords Protective Efficacy against Aerosol M. tuberculosis Infection in Mice. Vaccines (Basel),12(1), 50. https://doi.org/10.3390/vaccines12010050
Reshetnikov, V., Terenin, I., Shepelkova, G., Yeremeev, V., Kolmykov, S., Nagornykh, M., Kolosova, E., Sokolova, T., Zaborova, O., Kukushkin, I., Kazakova, A., Kunyk, D., Kirshina, A., Vasileva, O., Seregina, K., Pateev, I., Kolpakov, F., y Ivanov, R. (2024). Untranslated Region Sequences and the Efficacy of mRNA Vaccines against Tuberculosis. Int J Mol Sci, 25(2), 888. https://doi.org/10.3390/ijms25020888
Romano, M., Squeglia, F., Kramarska E, Barra G, Choi HG, Kim HJ, Ruggiero, A. y Berisio, R. (2023). A Structural View at Vaccine Development against M. tuberculosis. Cells, 12(2),317. https://doi.org/10.3390/cells12020317
Scholl, N.R., Silva, M.T.O., Barbosa, T.N., De Pinho, R.B., Alves, M.S.D., Portela, R.W., Azevedo, V.A.C. y Borsuk, S. (2023). Evaluation of the Association of Recombinant Proteins NanH and PknG from Corynebacterium pseudotuberculosis Using Different Adjuvants as a Recombinant Vaccine in Mice. Vaccines (Basel), 11(3), 519. https://doi.org/10.3390/vaccines11030519
Schwarz Chavarri, G., Sánchez Hernández, C., Moreno Millán, N., Morató Agustí, M.L., Martín, S., Javierre Miranda, A.P., Gutierrez Pérez, M.I., Gómez Marco, J.J., García Iglesias, C., y Aldaz Herce, P. (2020). Infectious Disease Prevention Group. Update on vaccines,2020. Practice Guideline Aten Primaria, 52. 70-92. https://doi.org/10.1016/j.aprim.2020.08.001
Setiabudiawan, T.P., Reurink, R.K., Hill, P.C., Netea, M.G., Van Crevel, R. y Koeken, VACM. (2022). Protection against tuberculosis by Bacillus Calmette-Guérin (BCG) vaccination: A historical perspective. Med Cell Press, 9(3), 6-24. https://doi.org/10.1016/j.medj.2021.11.006
Srivastava, S., Dey, S. y Mukhopadhyay, S. (2023). Vaccines against Tuberculosis: Where Are We Now?. Vaccines, 11, 1-23. https://doi.org/10.3390/vaccines11051013
Stewart, E.L., Counoupas, C., Quan, D.H., Wang, T., Petrovsky, N., Britton, W. J. y Triccas, J.A. (2024). Lung IL-17A-Producing CD4+ T Cells Correlate with Protection after Intrapulmonary Vaccination with Differentially Adjuvanted Tuberculosis Vaccines. Vaccines (Basel), 12(2), 128. https://doi.org/10.3390/vaccines12020128
Sultana, ZZ., Hoque, FU., Beyene, J., Ul-Islam, MA., Khan, MHR., Hossain, D. y Hossain, A. (2021). HIV infection and multidrug resistant tuberculosis: a systematic review and meta-analysis. BMC Infectious Diseases, 21(51). https://bmcinfectdis.biomedcentral.com/articles/10.1186/s12879-020-05749-2#citeas
Tarancón, R., Domínguez-Andrés, J., Uranga, S., Ferreira, A. V., Groh, L.A., Domenech, M., González-Camacho, F., Riksen, N.P., Aguilo, N., Yuste, J., Martín, C. y Netea, M.G. (2020). New live attenuated tuberculosis vaccine MTBVAC induces trained immunity and confers protection against experimental lethal pneumonia. PLoS Pathog, 16(4). https://doi.org/10.1371/journal.ppat.1008404
Taye, H., Alemu, K., Mihret, A., Wood, J. L. N., Shkedy, Z., Berg, S. y Aseffa, A. (2021). Global prevalence of Mycobacterium bovis infections among human tuberculosis cases: Systematic review and meta-analysis. Zoonoses and Public Health, 68(7), 704-718. https://doi.org/10.1111/zph.12868
Ullah, I., Bibi, S., Ul Haq, I., S., Ullah, K., Ge, L., Shi, X., Bin, M., Niu, H., Tian, J. y Zhu, B. (2020). The Systematic Review and Meta-Analysis on the Immunogenicity and Safety of the Tuberculosis Subunit Vaccines M72/AS01E and MVA85A. Frontiers in Immunology. Frontiers Media S.A, 11, 1-13. https://doi.org/10.3389/fimmu.2020.01806
Vidal, S. J., Sellers, D., Yu, J., Wakabayashi, S., Sixsmith, J., Aid, M., Barrett, J., Stevens, S.F., Liu, X., Li, W., Plumlee, C.R., Urdahl, K.B., Martinot, A.J. y Barouch, D.H. (2023). Attenuated Mycobacterium tuberculosis vaccine protection in a low-dose murine challenge model. iScience, 26(6), https://doi.org/10.1016/j.isci.2023.106963.
Wilkie, M., Satti, I., Minhinnick, A., Harris, S., Riste, M., Ramon, R.L., Sheehan, S., Manjaly Thomas, Z.R., Wright, D., Stockdale, L., Hamidi, A., O'Shea, M.K., Dwivedi, K., Behrens, H.M., Davenne, T., Morton, J., Vermaak, S., Lawrie, A., Moss, P., y McShane, H. (2020). A phase I trial evaluating the safety and immunogenicity of a candidate tuberculosis vaccination regimen, ChAdOx1 85A prime-MVA85A boost in healthy UK adults. Vaccine, 38(4),779-789. https://doi.org/10.1016/j.vaccine.2019.10.102
Wang, H., Wang, S., Fang, R., Li, X., Xing, J., Li, Z. y Song, N. (2024). Enhancing TB Vaccine Efficacy: Current Progress on Vaccines, Adjuvants and Immunization Strategies. Vaccines, 12(1), 38. https://doi.org/10.3390/vaccines12010038