Cost metrics and investments in energy generation with renewable sources, on a global scale
Keywords:
clean energy, International Renewable Energy Agency (IRENA), renewable energy, cost studies.Abstract
The objective of this scientific contribution is to analyze the metrics of costs and investments in energy generation with renewable sources on a global scale. To achieve this objective, information from the databases of the International Renewable Energy Agency (IRENA) and the Web of Science database is used. Using the tools and data contained in these two platforms, the evolution of costs, investments and scientific productivity in energy generation technologies with renewable sources was analyzed. The main results of the research point to a notable increase in research projects and their financing in this technological sector, which is so important for the planet's energy and climate security.
Downloads
References
Ashraf, M. M. y Malik, T. N. (2019). Least cost generation expansion planning in the presence of renewable energy sources using correction matrix method with indicators-based discrete water cycle algorithm. Journal of Renewable and Sustainable Energy, 11(5). Recuperado de http://doi:10.1063/1.5094540
Bravo, D., González, F. y González, J. (2018). Solar cooling in buildings. A state of the art. Revista Ingeniería de Construcción, 33(2), 115-126.
Bravo Hidalgo, D. (2015). Climatización solar de edificaciones. Centro Azúcar, 42, 72-82.
Bravo Hidalgo, D., González Alonso, J. y Martínez Pérez, Y. (2017). Costos de las tecnologías de almacenamiento de energía térmica. Centro Azúcar, 44, 67-76.
Bravo Hidalgo, D., Jiménez Borges, R. y Valdivia Nodal, Y. (2018). Applications of Solar Energy: History, Sociology and last Trends in Investigation. Producción + Limpia, 13, 21-28.
Bravo Hidalgo, D. y León González, J. L. (2018). Divulgación de la investigación científica en el Siglo XXI. Revista Universidad y Sociedad, 10, 88-97.
Gorman, W., Mills, A., & Wiser, R. (2019). Improving estimates of transmission capital costs for utility-scale wind and solar projects to inform renewable energy policy. Energy Policy, 135, 110-994. Recuperado de https://doi.org/10.1016/j.enpol.2019.110994
Hashemizadeh, A., Ju, Y., Bamakan, S. M. H., & Le, H. P. (2021). Renewable energy investment risk assessment in belt and road initiative countries under uncertainty conditions. Energy, 214, 118-923. Recuperado de https://doi.org/10.1016/j.energy.2020.118923
Hidalgo, D. B. y Guerra, Y. P. (2016). Eficiencia energética en la climatización de edificaciones. Revista Publicando, 3(8), 218-238.
Jafari, A., Khalili, T., Ganjehlou, H. G. y Bidram, A. (2020). Optimal integration of renewable energy sources, diesel generators, and demand response program from pollution, financial, and reliability viewpoints: A multi-objective approach. Journal of Cleaner Production, 247, 119-200.
Khouya, A. (2020). Levelized costs of energy and hydrogen of wind farms and concentrated photovoltaic thermal systems. A case study in Morocco. International Journal of Hydrogen Energy, 45(56), 31632-31650. Recuperado de https://doi.org/10.1016/j.ijhydene.2020.08.240
Koponen, K. y Le Net, E. (2021). Towards robust renewable energy investment decisions at the territorial level. Applied Energy, 287, 116-552. Recuperado de https://doi.org/10.1016/j.apenergy.2021.116552
Ma, R., Cai, H., Ji, Q. y Zhai, P. (2021). The impact of feed-in tariff degression on R&D investment in renewable energy: The case of the solar PV industry. Energy Policy, 151, 112-209. Recuperado de https://doi.org/10.1016/j.enpol.2021.112209
Noorollahi, Y., Khatibi, A. y Eslami, S. (2021). Replacing natural gas with solar and wind energy to supply the thermal demand of buildings in Iran: A simulation approach. Sustainable Energy Technologies and Assessments, 44, 101047. Recuperado de https://doi.org/10.1016/j.seta.2021.101047
Shi, R., Li, S., Zhang, P. y Lee, K. Y. (2020). Integration of renewable energy sources and electric vehicles in V2G network with adjustable robust optimization. Renewable Energy, 153, 1067-1080.
Sorrell, S. (2009). Jevons' Paradox revisited: The evidence for backfire from improved energy efficiency. Energy Policy, 37(4), 1456-1469. Recuperado de http://doi:10.1016/j.enpol.2008.12.003