Cognitive strategy to prevent Ddos attacks on web servers

Authors

  • Maidel de la Rosa Téllez Master's Degree in Educational Technologies. Assistant Professor of the Faculty of Technical and Agricultural Sciences. University of Las Tunas, Cuba. https://orcid.org/0000-0003-3731-6028
  • Mirelis Alcina Reyes Master's Degree in Educational Technologies. Assistant Professor of the Faculty of Technical and Agricultural Sciences. University of Las Tunas, Cuba. https://orcid.org/0000-0001-6089-1704
  • Ariel Céspedez Pérez Master's Degree in Applied Informatics. Assistant Professor of the Faculty of Technical and Agricultural Sciences. University of Las Tunas, Cuba. https://orcid.org/0000-0002-9091-2462

Keywords:

DDoS, Intrusion Detection System, Intrusion Prevention Systems, Computer attacks.

Abstract

The security of computer networks has become one of the fundamental issues of all entities, since it depends on this that the information is available, safe and reliable. During the development of this research with the use of tools it was possible to verify the existence of the vulnerability to attacks based on Denial of Service in the Web server with the Wordpress content manager, once corrected the configurations at Firewall and application level, it was possible to verify that this vulnerability had been solved, allowing the operation of the service under this type of attacks.

Downloads

Download data is not yet available.

References

Cheng, J., Zhang, C., Tang, X., Sheng, V. S., Dong, Z. y Li, J. (2018). Adaptive DDoS Attack Detection Method Based on Multiple-Kernel Learning. Security and Communication Networks. Recuperado de https://doi.org/10.1155/2018/5198685
De Donno, M., Dragoni, N., Giaretta, A. y Spognardi, A. (2018). DDoS-Capable IoT Malwares: Comparative Analysis and Mirai Investigation. Security and Communication Networks. Recuperado de https://doi.org/10.1155/2018/7178164
Guijarro, A., Cevallos, L. y Torres, I. (2018). Estrategia cognitiva para la evaluación de una central Ip basada en Asterisk frente a los ataques DoS. Opuntia Brava, 8(4). Recuperado de http://opuntiabrava.ult.edu.cu/index.php/opuntiabrava/article/view/271
Han, B., Yang, X., Sun, Z., Huang, J. y Su, J. (2018). OverWatch: A Cross-Plane DDoS Attack Defense Framework with Collaborative Intelligence in SDN. Security and Communication Networks. Recuperado de https://doi.org/10.1155/2018/9649643
Hernández, A. L. y Mejia, J. (2015). Guía de ataques, vulnerabilidades, técnicas y herramientas para aplicaciones web. ReCIBE. Revista electrónica de Computación, Informática, Biomédica y Electrónica, (1). Recuperado de https://www.redalyc.org/articulo.oa?id=512251501005
Huang, C., Yi, P., Zou, F., Yao, Y., Wang, W. y Zhu, T. (2019). CCID: Cross-Correlation Identity Distinction Method for Detecting Shrew DDoS. Wireless Communications and Mobile Computing. Recuperado de https://doi.org/10.1155/2019/6705347
Jaafar, G. A., Abdullah, S. M. y Ismail, S. (2019). Review of Recent Detection Methods for HTTP DDoS Attack. Journal of Computer Networks and Communications. Recuperado de https://doi.org/10.1155/2019/1283472
Jia, B., Huang, X., Liu, R. y Ma, Y. (2017). A DDoS Attack Detection Method Based on Hybrid Heterogeneous Multiclassifier Ensemble Learning. Journal of Electrical and Computer Engineering. Recuperado de https://doi.org/10.1155/2017/4975343
Valarezo, M., Honores, J., Gómez, A. y Vinces, L. (2018). Comparación de tendencias tecnológicas en aplicaciones web. 3C Tecnología. Glosas de innovación aplicadas a la pyme, 28-49. Recuperado de http://ojs.3ciencias.com/index.php/3c-tecnologia/article/view/618

Published

2021-01-29

How to Cite

de la Rosa Téllez, M., Alcina Reyes, M., & Céspedez Pérez, A. (2021). Cognitive strategy to prevent Ddos attacks on web servers. Opuntia Brava, 13(1), 102–112. Retrieved from https://opuntiabrava.ult.edu.cu/index.php/opuntiabrava/article/view/1193

Issue

Section

Articles